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Abstract The effects of an elastic membrane on the viscous oscillations of liquid filling a circular cylindrical
container are studied by using the natural viscous complex eigenfunctions of the problem. The free surface of the
liquid is assumed to be fully covered by the membrane. By projecting the governing equations onto an appropriate
basis, a nonlinear eigenvalue problem for the complex frequencies is obtained. This is then solved to obtain the
modal frequencies as a function of the Reynolds number Re, the tension parameter τ, the mass parameter ζ and the
liquid depth h. The zero velocity conditions on both the side and bottom walls are satisfied unlike in earlier studies
where either only the sidewall or only the bottom wall conditions were met. Results are presented for the four lowest
non-axisymmetric modes as a function of Re, h, τ and ζ. The elastic cover increases the slosh frequencies but only
in comparison with an uncovered free surface with a contact line that is free to move; the frequencies are lower
when compared with those of a free surface with pinned contact line. There are ranges of Re, h, τ and ζ for which
the oscillations are overdamped and the sloshing is aperiodic. Though the frequencies and damping rates decrease
for an increasing mass of the elastic cover, there exist ranges of Re, h and τ for which the heavier cover produces
higher slosh frequencies.

Keywords Circular cylinder · Complex eigenfunctions · Hydroelastic oscillations · Non-axisymmetric modes ·
Nonlinear eigenvalue problem

1 Introduction

The use of large and light-weight tank structures in aerospace vehicles has led to an extensive study of their stability
and control. This is a difficult problem as the interaction of the fluid and tank structure has to be taken into account.
Some of these studies have focused on the fluid interaction with the elastic cylinder wall (see references in [1])
while others have investigated the effects of an elastic bottom (see references in [1]). Meanwhile various devices
like liquid or movable surface devices (floating lids/mats, floating cans) and fixed baffles have been employed to
suppress slosh and move the coupled frequencies away from the control [2]. It is important to know the frequencies
and damping rates of these coupled systems. In this paper, we determine the frequencies and damping rates of one
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270 R. Kidambi

such system consisting of a liquid in a circular cylindrical container with the free surface of the liquid covered by
an elastic cover.

Though apparently a linear problem that has been studied for the last fifty years, a complete solution has not been
published, to our knowledge. For instance, the recent paper [1] presents a method that works only for large liquid
depths, ignoring as it does the no-slip condition on the bottom wall. Bauer and Chiba [3] present another method
for the same problem; however, the applicability in this case is only to small liquid depths. Analogous studies for
axisymmetric oscillations have been published in [4]. In all these studies, real eigenfunctions are used to represent
the velocity and pressure fields and these representations do not turn out to be rich enough to satisfy all bound-
ary conditions. Indeed, Bauer and Chiba [1] write ‘The analytical approaches of shallow and large-aspect-ratio
containers cannot, due to the different analytical procedures, yield an acceptable transition region h/a’.

The present approach overcomes these shortcomings by employing the natural complex eigenfunctions of the
linearised Navier–Stokes equations for the cylindrical geometry to represent the velocities and pressures; these rep-
resentations turn out to be rich enough to satisfy all boundary conditions simultaneously. This method was devised
to obtain a semi-analytic solution to the unsteady Stokes problem in a lid-driven cylindrical container [5]; it has
recently been applied to the damping of viscous oscillations in a cylindrical container with pinned contact line [6].
In this paper, the method is appropriately modified to take into account the elastic surface cover. For numerous
examples of the usage of complex eigenfunction expansions to calculate slow viscous flows, see [7].

The coupled frequencies and damping rates for any liquid depth, with all boundary conditions satisfied, can be
obtained by the present method. The results from the current method for the case of no elastic cover are in excellent
agreement with extensive experimental results of Howell et al. [8]. However, there is a large discrepancy between
the present results and those in [1] and [3].

The paper is organised as follows. Section 2 presents the governing equations and boundary conditions. Section 3
presents an eigenvalue formulation and solution of the problem where the natural viscous complex eigenfunctions of
the problem are used. Section 4 presents results for a range of Reynolds number, liquid depth and mass and tension
parameters; these include comparisons with published analytical [9], experimental [8] and numerical results of [1]
and [3]. The variations of the frequency and damping rate with the mass parameter ζ, the tension parameter τ ,
liquid depth h and the Reynolds number Re are also explored for the lowest slosh modes.

2 Governing equations

We consider the small oscillations of viscous liquid filling a circular cylindrical container of radius R; an elastic
membrane is assumed to fully cover the free surface. In this paper, we use ‘elastic cover’ and ‘elastic membrane’
interchangeably. Figure 1 shows the geometry and coordinate system. Scaling lengths by R and time by

√
R/g, and

linearising around the rest state, we have [1]

∂ ûr

∂r
+ ûr

r
+ 1

r

∂ ûθ
∂θ

+ ∂ ûz

∂z
= 0, (1a)

ût = −∇ p̂ + 1

Re
∇2û, (1b)

ûr (r = 1, θ, z, t) = ûθ (r = 1, θ, z, t) = ûz(r = 1, θ, z, t) = 0, (1c)

ûr (r, θ, z = −h, t) = ûθ (r, θ, z = −h, t) = ûz(r, θ, z = −h, t) = 0 (1d)

ûr = ûθ = 0, η̂t = ûz, on z = 0, (1e)

p̂ − 2

Re

∂ ûz

∂z
− η̂ + τ

[
∂2η̂

∂r2 + 1

r

∂η̂

∂r
+ 1

r2

∂2η̂

∂θ2

]
= ζ

∂2η̂

∂t2 on z = 0, (1f)

η̂(r = 1, θ, t) = 0 and

2π∫
0

1∫
0

r η̂(r, θ, t)dr = 0. (1g,h)
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Viscous oscillations in a circular cylinder with an elastic cover on the free surface 271

Fig. 1 Geometry for
hydroelastic oscillations of
an elastic membrane
covering the free surface in
a circular cylinder. The
liquid is of depth h

Here ûr , ûθ and ûz are the r -, θ - and z-components of velocity, p̂ is the reduced pressure (with gravity incor-
porated) and η̂ the deflection of the elastic membrane. Re = √

gR3/ν is the gravitational Reynolds number,
τ = T/ρgR2 is the tension parameter and ζ = ξ/ρR is the density ratio; ρ and ν are the density and kinematic
viscosity of the fluid, T and ξ are the tension and mass per unit area of the membrane and g is the acceleration due to
gravity. Note that the gravitational parameter g∗ and the tension parameter T ∗ [1] equal Re2 and Re2τ , respectively.
The continuity equation is given by 1(a), the momentum equations by 1(b), the zero-velocity boundary conditions
on the side wall by 1(c), the boundary condition on the bottom wall by 1(d), the kinematic conditions on the elastic
membrane by 1(e) and the deformation of the elastic membrane by 1(f). Note that, under linearisation, 1(e,f) are
applied on z = 0. The fixed boundary condition for the membrane is given by 1(g) and the volume conservation
condition by 1(h).

Anticipating the existence of axisymmetric modes, it may be noted that similar equations hold with the obvious
change that there is no azimuthal dependence and that the velocity field is two-dimensional.

3 Solution

Since we are interested in oscillatory solutions to the system 1(a–h), we seek

ûr (r, θ, z, t) = e
t ur (r, θ, z), ûθ (r, θ, z, t) = e
t uθ (r, θ, z), (2a,b)

ûz(r, θ, z, t) = e
t uz(r, θ, z), p̂(r, θ, z, t) = e
t p(r, θ, z), and η̂(r, θ, t) = e
tη(r, θ). (2c,d,e)

where 
 is the (possibly complex) oscillatory frequency to be determined. The real and imaginary parts of 
, 
r

abd 
i give the damping rate and frequency. Using 2(a–e) in system (1), we have

∂ur

∂r
+ ur

r
+ 1

r

∂uθ
∂θ

+ ∂uz

∂z
= 0, (3a)


u = −∇ p + 1

Re
∇2u, (3b)

ur (r = 1, θ, z) = uθ (r = 1, θ, z) = uz(r = 1, θ, z) = 0, (3c)

ur (r, θ, z = −h) = uθ (r, θ, z = −h) = uz(r, θ, z = −h) = 0, (3d)

ur = uθ = 0, 
η = uz on z = 0, (3e)

p − 2

Re

∂uz

∂z
− η + τ

[
∂2η

∂r2 + 1

r

∂η

∂r
+ 1

r2

∂2η

∂θ2

]
= 
2ζη on z = 0, (3f)

η(r = 1, θ) = 0 and

2π∫
0

1∫
0

rη(r, θ)dr = 0. (3g,h)

Following Kidambi [5], we seek

u = ∇φ + ∇ × A, p = −
φ, (4a,b)
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where B = ∇ × A satisfies the vector Helmholtz equation, ∇2B = 
Re B, while φ satisfies ∇2φ = 0. It is easily
checked that the above velocity and pressure fields, with B and φ as defined satisfy the continuity and the linearised
Navier–Stokes equations 3(a,b).

Using the results in [10], we may write two independent solenoidal vector fields B1 and B2 satisfying the vector
Helmholtz equation as

B1 = ekz
[

er

(
cos mθ
− sin mθ

)
{Jm−1(αr)+ Jm+1(αr)} − eθ

(
sin mθ
cos mθ

)
{Jm−1(αr)− Jm+1(αr)}

]
, (5a)

B2 = ekz
[

er k

(
cos mθ
− sin mθ

)
{Jm−1(αr)− Jm+1(αr)} − eθk

(
sin mθ
cos mθ

)
{Jm−1(αr)+ Jm+1(αr)}

+ez2α

(
cos mθ
sin mθ

)
Jm(αr)

]
. (5b)

Here, (er , eθ , ez) are the unit vectors in the cylindrical coordinate system, Jm is the Bessel function of the first kind
of order m, and α = √

k2 −
Re. m and k are the azimuthal and axial wavenumbers. Note that out of the four
possible vector fields given above, two generate radial and axial velocity fields that are symmetric about θ = 0
and the other two antisymmetric. We shall call these ‘symmetric’ and ‘antisymmetric’ modes, respectively, as these
correspond to symmetric and antisymmetric free surface oscillations. However, the frequency of the mode with
azimuthal wave number m is the same, irrespective of whether it is symmetric or antisymmetric. From now on, for
definiteness, we consider only symmetric modes. The scalar field φ can be immediately written down as

φ(r, θ, z) = ekz
(

cos mθ
sin mθ

)
Jm(kr).

We now write down the velocity fields for the symmetric modes, with obvious changes for the antisymmetric ones.
Anticipating imaginary eigenvalues, we scale the Bessel functions by an exponential factor exp(ki ), ki = Im(k) to
avoid the large numbers that result for Bessel functions of arguments with large imaginary parts. Thus, in what fol-
lows, Jm(kr) actually means Jm(kr)/exp(ki ). By combining the fields ∇φ,B1 and B2 in the ratio 1:a:b, a candidate
velocity field can be written as

vr (r, θ, z) = ekz cos mθ

[
d

dr
Jm(kr)+ a{Jm−1(αr)+ Jm+1(αr)} + bk{Jm−1(αr)− Jm+1(αr)}

]
, (6a)

vθ (r, θ, z) = −ekz sin mθ
[m

r
Jm(kr)+ a{Jm−1(αr)− Jm+1(αr)} + bk{Jm−1(αr)+ Jm+1(αr)}

]
, (6b)

vz(r, θ, z) = ekz cos mθ [k Jm(kr)+ b2α Jm(αr)] . (6c)

These velocity fields define modes that we denote by (m, n); m denotes the number of azimuthal nodes (nodal
diameters) while n denotes the number of nodes in the radial direction (nodal circles), excluding the one enforced
by the pinned contact line at r = 1. Thus, the first axisymmetric mode is (0,1), while the first non-axisymmetric
modes are (m,0). The vanishing of the velocity on the sidewall r = 1 leads to the following system of linear
equations:

k

2
{Jm−1(k)− Jm+1(k)} + a{Jm−1(α)+ Jm+1(α)} + bk{Jm−1(α)− Jm+1(α)} = 0, (7a)

m Jm(k)+ a{Jm−1(α)− Jm+1(α)} + bk{Jm−1(α)+ Jm+1(α)} = 0, (7b)

k Jm(k)+ b2α Jm(α) = 0. (7c)

For (7) to have a non-trivial solution, we need∣∣∣∣∣∣
k
2 {Jm−1(k)− Jm+1(k)} Jm−1(α)+ Jm+1(α) k{Jm−1(α)− Jm+1(α)}
m Jm(k) Jm−1(α)− Jm+1(α) k{Jm−1(α)+ Jm+1(α)}
k Jm(k) 0 2α Jm(α)

∣∣∣∣∣∣ = 0,

which, on simplification, leads to an eigenvalue relation for k which reads

4k2 Jm−1(α)Jm(k)Jm+1(α)+ kα Jm(α)[Jm−1(k)− Jm+1(k)][Jm−1(α)− Jm+1(α)] − 4m2 Jm(k)J
2
m(α) = 0. (8)
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For k and α satisfying (8), Eqs. 6 will yield vector eigenfunctions provided the constants a and b are given by

a = m Jm(k)(1 − k2/α2)

Jm+1(α)− Jm−1(α)
, b = − k

2α
Jm(k)

Jm(α)
.

For m �= 0, it is known from [5] that (8) has three sets of complex eigenvalues which we denote {λn}, {µn} and
{νn}. However, the equation in [5] is simpler than the present one because (8) involves the unknown 
 which has
to be determined so as to satisfy an eigenvalue problem that we will derive in the next section.

We now sketch the solution for the axisymmetric modes(m = 0), which is slightly different. For these modes,
B2 (5(b)) is the only non-zero velocity field and is given by

B2 = ekz[−er k J1(αr)+ ezα J0(αr)].
A candidate velocity field can be written as

vr (r, z) = −kekz[J1(kr)+ 2bJ1(αr)],
vz(r, z) = ekz[k J0(kr)+ b2α J0(αr)],
where the wave number k is a solution of the eigenvalue relation

α J1(k)J0(α)− k J0(k)J1(α) = 0, and b = − k

2α

J0(k)

J0(α)
.

The eigenvalue equation has only two sets of complex eigenvalues {λn} and {µn}.
We now formulate an eigenvalue problem for 
. Equations 3(e,f) involve η(r, θ) which we seek as

η(r, θ) = cos mθ
N∑

n=1

gn Jm(δnr), (9)

where the gn are coefficients to be determined by satisfying 3(e,f). Here the δn are the zeros of Jm . Note that
(9) satisfies the fixed boundary condition 3(g) and the volume conservation condition 3(h) for non-axisymmetric
(m = 0) modes. We next write the three components of the velocity field ur , uθ and uz as linear combinations of
the vector eigenfunctions given in (6). Denoting

p1
n(r) =

[
d

dr
Jm(λnr)+ a{Jm−1(α

1
nr)+ Jm+1(α

1
nr)} + bλn{Jm−1(α

1
nr)− Jm+1(α

1
nr)}

]
, (10a)

p2
n(r) =

[m

r
Jm(λnr)+ a{Jm−1(α

1
nr)− Jm+1(α

1
nr)} + bλn{Jm−1(α

1
nr)+ Jm+1(α

1
nr)}

]
, (10b)

p3
n(r) =

[
λn Jm(λnr)+ 2bα1

n Jm(α
1
nr)

]
, (10c)

q1
n (r) =

[
d

dr
Jm(µnr)+ a{Jm−1(α

2
nr)+ Jm+1(α

2
nr)} + bµn{Jm−1(α

2
nr)− Jm+1(α

2
nr)}

]
, (10d)

q2
n (r) =

[m

r
Jm(µnr)+ a{Jm−1(α

2
nr)− Jm+1(α

2
nr)} + bµn{Jm−1(α

2
nr)+ Jm+1(α

2
nr)}

]
, (10e)

q3
n (r) =

[
µn Jm(µnr)+ 2bα2

n Jm(α
2
nr)

]
, (10f)

s1
n(r) =

[
d

dr
Jm(νnr)+ a{Jm−1(α

3
nr)+ Jm+1(α

3
nr)} + bνn{Jm−1(α

3
nr)− Jm+1(α

3
nr)}

]
, (10g)

s2
n (r) =

[m

r
Jm(νnr)+ a{Jm−1(α

3
nr)− Jm+1(α

3
nr)} + bνn{Jm−1(α

3
nr)+ Jm+1(α

3
nr)}

]
, (10h)

s3
n(r) =

[
νn Jm(νnr)+ 2bα3

n Jm(α
3
nr)

]
, (10i)
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we can write the three components of the velocity field for the mth azimuthal mode as

ur (r, θ, z) = cos mθ
∞∑

n=1

[
p1

n(r)

(
an

cosh λn(z + h/2)

cosh λn
h
2

+ dn
sinh λn(z + h/2)

sinh λn
h
2

)
+ q1

n (r)

(
bn

coshµn(z + h/2)

coshµn
h
2

+ en
sinhµn(z + h/2)

sinhµn
h
2

)
+ s1

n(r)

(
cn

cosh νn(z + h/2)

cosh νn
h
2

+ fn
sinh νn(z + h/2)

sinh νn
h
2

)]
, (11a)

uθ (r, θ, z) = − sin mθ
∞∑

n=1

[
p2

n(r)

(
an

cosh λn(z + h/2)

cosh λn
h
2

+ dn
sinh λn(z + h/2)

sinh λn
h
2

)
+ q2

n (r)

(
bn

coshµn(z + h/2)

coshµn
h
2

+ en
sinhµn(z + h/2)

sinhµn
h
2

)
+ s2

n (r)

(
cn

cosh νn(z + h/2)

cosh νn
h
2

+ fn
sinh νn(z + h/2)

sinh νn
h
2

)]
, (11b)

uz(r, θ, z) = cos mθ
∞∑

n=1

[
p3

n(r)

(
an

sinh λn(z + h/2)

cosh λn
h
2

+ dn
cosh λn(z + h/2)

sinh λn
h
2

)
+ q3

n (r)

(
bn

sinhµn(z + h/2)

coshµn
h
2

+ en
coshµn(z + h/2)

sinhµn
h
2

)
+ s3

n(r)

(
cn

sinh νn(z + h/2)

cosh νn
h
2

+ fn
cosh νn(z + h/2)

sinh νn
h
2

)]
. (11c)

In the above, α1
n = √

λ2
n −
Re, α2

n = √
µ2

n −
Re, α3
n = √

ν2
n −
Re (these appear in p j

n , q j
n and s j

n , j =
1, 2, 3); an, bn, cn, dn, en, fn are the unknown complex coefficients that have to be determined such that the remain-
ing boundary conditions 3(d,e,f), two of which also contain the unknown frequency 
, are satisfied. Note that the
coefficients of an, bn, cn, dn, en and fn are divided by the hyperbolic functions to keep them O(1) at z = 0 and
z = −h where the boundary conditions will be applied. We follow a weighted-residual-method approach and
require the inner product of equations 3(d,e,f) with the first N members of a complete set of test functions to vanish.
We choose the test functions as the set {Jm(δlr), l = 1, 2, . . .}, where the δl are the zeros of Jm . First we project
the bottom boundary conditions 3(d) and the first two of 3(e) to get the set of 5N equations

N∑
n=1

(anβ
i
nl + bnξ

i
nl + cnχ

i
nl + dnγ

i
nl + enρ

i
nl + fnψ

i
nl) = 0, i = 1, . . . , 5; l = 1, . . . , N (12)

with the integrals β i
nl , . . . defined in Appendix. Equation 12 can be written in matrix form as

U

⎛
⎜⎜⎜⎜⎝

b
c
d
e
f

⎞
⎟⎟⎟⎟⎠ = −V a, (13)

where U and V are defined by

U =

⎛
⎜⎜⎜⎜⎝

Y1 Z1 X1 Y1 Z1

Y2 Z2 X2 Y2 Z2

Y3 Z3 X3 Y3 Z3

Y4 Z4 X4 Y4 Z4

Y5 Z5 X5 Y5 Z5

⎞
⎟⎟⎟⎟⎠ and V =

⎛
⎜⎜⎜⎜⎝

X1

X2

X3

X4

X5

⎞
⎟⎟⎟⎟⎠ .

An inversion of U gives b, c,d, e and f in terms of a. Note that U and V have dimensions 5 N × 5 N and 5 N × N .
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Expressing the pressure in terms of the potential by 4(b) and projecting the last equation of 3(e) and 3(f) onto
the set {Jm(δlr)}, we get 2N equations:

N∑
n=1

(
anβ

6
nl + bnξ

6
nl + cnχ

6
nl + dnγ

6
nl + enρ

6
nl + fnψ

6
nl

)
= 


N∑
n=1

gnθ
6
nl , l = 1, . . . N , (14a)

ζ
2
N∑

n=1

gnθ
6
nl +


N∑
n=1

(
anβ

7
nl + bnξ

7
nl + cnχ

7
nl + dnγ

7
nl + enρ

7
nl + fnψ

7
nl

)

+
N∑

n=1

(
anβ

8
nl + bnξ

8
nl + cnχ

8
nl + dnγ

8
nl + enρ

8
nl + fnψ

8
nl + gnθ

8
nl

)
= 0, l = 1, . . . N . (14b)

The integrals appearing in (14) are also given in Appendix. We use (13) to write (14) in terms of only a and g as

C1a = 
D1g, 
2D2g +
C2a + C3a + D3g = 0. (15a,b)

Using 15(a) to express a in terms of g, we can finally write 15(b) as the nonlinear eigenvalue problem

(E1(
; Re, τ, ζ )
2 + E2(
; Re, τ, ζ )
+ E3(
; Re, τ, ζ ))g = 0 (16)

where E1,E2 and E3 are N × N matrices with

E1 = D2 + C2C1
−1D1, E2 = C3C1

−1D1 and E3 = D3.

Note that, although (16) has the formal appearance of a generalised nonlinear eigenvalue problem, its solution
requires iteration as the matrices E1,E2 and E3 are functions of 
. The numerical procedure consists of the
following steps -

1. Start with an initial guess for 
,
i .

2. For this value of 
 and the given Re, determine the eigenvalues λn, µn and νn .
3. Compute the matrices E1,E2 and E3.
4. Solve the eigenvalue problem (16) and obtain 
 f .
5. If Re{
 f −
i } and Im{
 f −
i } < ε for a chosen tolerance, the calculation is done. If not, repeat (1–5) with


i = α0
i + (1 − αo)
 f , with αo ∈ (0, 1). We have used αo = 0.5.

The nonlinear eigenvalue problem (16) can be written as a linear eigenvalue problem of twice the dimension by
introducing the vector v = 
g; thus the original problem can be written(

0 1
−E1

−1E3 −E1
−1E2

) (
g
v

)
= 


(
g
v

)
(17)

where 0 is the N × N zero matrix and 1 is the identity matrix of dimension N . (17) has been solved by the LAPACK
routine ZGEEV. The pinned contact line frequencies for infinite depth and a flat interface have been used as starting
values; these are then continued in the h − Re − τ − ζ space to the required parameter values. In general the
procedure works well and convergence is achieved under ten iterations. Note that this procedure has to be repeated
for the different modes, i.e., even though N
 are obtained by solving (17), all these will not be the correct values
as the iteration was performed with respect to only one of those temporal eigenvalues. In other words, each modal
frequency has corresponding to it a different set of spatial eigenvalues. The axisymmetric case m = 0 is more
subtle. Now mass conservation is not automatic unlike in the non-axisymmetric case; this defines a constraint on
the gn appearing in η given by (9). However, using this and the fact that a constant term has to be included in the
expansion for φ [11] leads to a similar eigenvalue problem as for the non-axisymmetric modes.

4 Results and discussion

The frequency and damping rate of a given mode depend on the four parameters Re, h, τ and ζ. Since the parameter
space is large, we will sketch this dependence for representative values of these parameters. We start off with a
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Table 1 Convergence
study for the frequency and
damping rate of the (1, 0)
mode

20 and 40 modes have been
used h = 2, τ = 0.1,
ζ = 0.01

Re −
r 
i

N = 20 N = 40 N = 20 N = 40

100 0.1905 0.1907 2.190 2.190

1000 0.0546 0.0546 2.302 2.303

10000 0.0169 0.0165 2.336 2.338

validation of the current results. A convergence study over a two-decadal range of Re is presented in Table 1; the
calculations with N = 20 and N = 40 modes show convergence to three decimal places for both frequency and
damping rate. In most of the calculations presented below, the bottom wall boundary conditions are satisfied to
O(10−10) and the convergence criterion for the iterative procedure of Sect. 3.1; ε has been fixed at 10−6.

Extensive experimental results have been published by [8] for the viscous oscillations of a free surface with
pinned contact line in a circular cylinder. The governing equations 3(a–d) are the same; of the triad 3(e), only the
last is valid. The first two have to be replaced by the two shear stress equations

∂ur

∂z
+ ∂uz

∂r
= 0,

∂uθ
∂z

+ 1

r

∂uz

∂θ
= 0,

while ζ is zero in 3(f) (there is no elastic cover) and τ = 1/Bo where Bo is the Bond number and is related to the
surface tension of the liquid rather than the tension of the elastic structure. The details of the calculation procedure
can be found in [6]. Table 2 provides a comparison of the results obtained with the present method, the experimental
results of [8] and the asymptotic calculations of Martel et al. [9]. The results with the present method are in closer
agreement with the experimental values at low Re and are comparable at high Re. Forty eigenmodes have been used
to obtain these results.

It is well-known that, in general, viscosity reduces the oscillation frequency of a linear damped oscillator; in
particular, Martel et al. [9], Howell et al. [8], Nicolás [12] and Kidambi [13] have shown this to be true for damped
surface capillary-gravity waves in a container.

Figure 2 shows the inviscid frequency (Re = ∞) and the frequency for Re = 100 for the (1,0) mode for a
range of ζ ; the inviscid frequency is larger. This holds true for other modes and other values of h, ζ and τ as well.
The inviscid frequencies have been calculated by appropriately modifying the procedure in [11] to account for the
elastic cover. The damping rate, on the other hand, is zero for Re = ∞ and increases with decreasing Re. It is
known from studies of damping of capillary-gravity waves [12,13] that for a given mode, fluid depth and Bond
number, there exists a critical Re, Recr below which 
i = 0 and 
r becomes double-valued. Figure 3 shows the
complex frequency of the lowest three modes for Re → 0; h = 1, τ = 0.1, ζ = 0.01. It is clear that the modes
are overdamped for Re < Recr, the latter increasing with increasing mode number. Figure 4 shows similar data for
a very heavy cover, with ζ = 10. The increase in the mass of the cover leads to Recr ≈ 0. In the figures we have
shown only the lower branch of −
r for Re < Recr as this is the branch that decays the slowest. Figure 5 shows
the results for a shallow depth of h = 0.3 and τ = 0.1 for the (1,0) mode; light (ζ = 0.01) and heavy (ζ = 10)
covers have been considered. This figure should be compared with Figs. 3 and 4, where h = 1. The shallow depth
means a larger damping rate (about twice for ζ = 0.01 and ten times for the heavier cover ζ = 10 at Re = 30)
which in turn implies a higher Recr. Recr ≈ 30 for the shallow depth as against a value of 4 for h = 1. This means
that there exist parameter values (for example, Re < 30, h = 0.3, τ = 0.1 here) for which the frequency increases
with increasing ζ , even though in general the opposite is true.

Another interesting question is the relation of the slosh frequency and damping-rate with an elastic cover present
to those when there is no elastic cover. When there is no elastic cover, the contact line is free to move in general;
it can also be arranged to be at rest as in the experiment of Howell et al. [8]. In the former case, the frequency
increases if an elastic cover is present while in the latter, it decreases. Since the modelling of the viscous moving
contact line is still an unresolved issue, we will consider the inviscid case for the (1,0) mode with and without an
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Table 2 Comparison of theoretical predictions (
t
r , 


t
i ) with experimental measurements (
e

r , 

e
i ) for h = 1.379 and Bo = 365

Re C 
t
r/


e
r −
e

r 
t∗
r /


e
r 
t

i/

e
i 
e

i 
t∗
i /


e
i

(1,0) mode

13077.02 7.647 × 10−5 1.049 0.0060 0.963 1.006 1.438 1.006

2610.97 3.830 × 10−4 0.967 0.0155 1.013 1.008 1.430 1.009

272.48 3.670 × 10−3 0.987 0.0680 1.197 1.008 1.405 1.011

(2,0) mode

13077.02 7.647 × 10−5 0.993 0.0090 0.973 1.007 1.899 1.006

2610.97 3.830 × 10−4 0.970 0.0254 1.035 1.008 1.889 1.009

271.44 3.684 × 10−3 0.944 0.1364 1.169 1.006 1.852 1.013

(3,0) mode

13077.02 7.647 × 10−5 1.010 0.0117 0.996 1.007 2.272 1.006

1321.00 7.570 × 10−4 0.965 0.0629 1.038 1.009 2.252 1.009

568.51 1.759 × 10−3 0.962 0.1166 1.130 1.007 2.234 1.012

(1,1) mode

13077.02 7.647 × 10−5 0.962 0.0082 0.948 1.006 2.501 1.005

1318.57 7.584 × 10−4 0.982 0.0557 1.081 1.004 2.493 1.007

570.78 1.752 × 10−3 0.968 0.1170 1.130 1.004 2.483 1.010

(4,0) mode

13077.02 7.647 × 10−5 0.965 0.0155 0.946 1.008 2.609 1.006

6480.88 1.543 × 10−4 0.958 0.0252 0.984 1.008 2.604 1.006

2620.55 3.816 × 10−4 1.013 0.0501 1.012 1.008 2.596 1.010

The starred quantities are theoretical values from [9]. C = 1/Re

Fig. 2 Variation of the
frequency with mass
parameter ζ for
h = 1, τ = 0.01. Results
for Re = ∞ (inviscid
conditions) and Re = 100
are represented by the
dashed and solid lines,
respectively

10-2 10-1 100 101
0

0.4

0.8

1.2

1.6

2

2.4

ζ

Ω i

elastic cover. The frequency in the latter case, of an inviscid moving contact line, is given by the classical result
[14],
2

n = δn(1+ δ2
n/Bo) tanh δnh, where J ′

m(δn) = 0.We compare the frequencies for the two cases in Fig. 6; the
elastic cover increases the natural frequency because the interface is more constrained when a cover is present; for
example, the contact line is free to move in the absence of a cover whereas it is pinned at the cylinder wall with an
elastic cover present. This is the case considered in [15] where one of the conclusions is that ‘the covering of a free
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Fig. 3 Variation of the coupled (a) damping rates (b) frequencies of the lowest modes as Re → 0. ζ = 10−2, h = 1 and τ = 0.1

25
0

0.1

0.2

0.3

0.4

Re

− Ωr

(3,0)

(2,0)

(1,0)

0.3

0.4

0.5

0.6

0.7

0.8

Re

(3,0)

(2,0)

(1,0)

iΩ

(a) (b)

1007550 25 1007550

Fig. 4 Variation of the coupled (a) damping rates (b) frequencies of the lowest modes as Re → 0. ζ = 10, h = 1 and τ = 0.1
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Fig. 5 Variation of the coupled (a) damping rates (b) frequencies of the (1,0) mode for shallow depth h = 0.3. There are parameter
ranges where 
i is bigger for ζ = 10 than for ζ = 0.01. τ = 0.1

liquid surface with a flexible membrane or an elastic thin plate increases the frequencies.’ That it is the constraint
which increases the frequency becomes clear if the case of an elastic cover is compared with the case of no cover,
but with a pinned contact line.

Figure 7 shows the frequency and damping-rate variation with the tension parameter τ for the (2,0) mode for
Re = 100, h = 1 and ζ = 10−4 with and without an elastic cover present. Twenty modes have been used in
these calculations. The frequency for the no-cover case is higher while the damping rate is larger with the cover
present. The latter is easily explained as being due to the boundary layer at the elastic cover being stronger than the
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Fig. 6 Variation of the
inviscid frequency with
liquid depth h for
ζ = 10−3, τ = 0.002
Results with and without a
elastic cover are represented
by the solid and dashed
lines, respectively
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Fig. 7 Variation of the coupled (a) damping rates (b) frequencies of the (2,0) mode with tension parameter τ ; ζ = 10−4, h = 1 and
Re = 100. The solid and dashed lines show the results with and without an elastic cover present. In the latter case, the contact line is
pinned

free-surface boundary layer that would obtain in the absence of a cover. The decreased frequency in the presence of
a cover is more subtle and could be a viscous effect. We conjecture that the higher viscous action resulting from the
presence of a cover leads to a greater reduction in the natural frequency. This conjecture can be tested by comparing
the two cases for a higher Reynolds number; the frequencies should be much closer as the viscous action is much
weaker in this case. Figure 8 shows this to be indeed the case.

We now explore the variation of the frequency and damping rate of the lowest slosh modes with h, τ and ζ.
Figure 9(a,b) show the variation of the damping rate and frequency of the (1, 0), (2, 0), (3, 0) and (1, 1)modes with
liquid depth h. ζ = 0.01 and τ = 0.1, being the parameters in [1] and [3], have been used for these calculations
with a view to comparing the results. The latter employ different non-dimensional parameters from ours; Table 3
gives the relationship between the two. The results in [1] are for the parameter values g∗ = 104, T ∗ = 103 and
µ∗ = 0.01. These yield parameter values Re = 100, τ = 0.1 and ζ = 0.01 for the present study. Also,
b = 100
.
Figure 9(a,b) are to be compared with Figs. 3–6 in [1].1

1 These results are assumed to be valid for 0.5 ≥ h/R; this is why the solid lines in these figures end abruptly. For the (1,1) and (3,0)
modes (Figs. 4 and 6 of [1]), the results have been plotted for h/R < 0.5; these have been obtained by a different analytic procedure, as
outlined in [3]. Note that the frequency curves for h/R < 0.5 do not continue smoothly to the ones for h/R ≥ 0.5 (they are not even
close); the damping rate behaviour is somewhat better.
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Fig. 8 Variation of the coupled (a) damping rates (b) frequencies of the (2,0) mode with tension parameter τ . All parameters except
Re are same as in Fig. 7. Re = 10000. The solid and dashed lines show the results with and without an elastic cover present. Note that
the frequencies for the two cases are much closer than in Fig. 7
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Fig. 9 Variation of the coupled (a) damping rates (b) frequencies of the (1,0), (2,0), (3,0) and (1,1) modes with depth. In a), the curves
from top to bottom correspond to the (1,1), (3,0), (2,0) and (1,0) modes, respectively. ζ = 10−2, τ = 0.1 and Re = 100

Table 3 The relation
between the parameters in
[1] and the present work

[1] Present

g∗ = gR3/ν2 Re = √
gR3/ν = √

g∗

T ∗ = T R/ρν2 τ = T/ρgR2 = T ∗/g∗

µ∗ = µ/ρR ζ = ξ/ρR


b = 
d R2/ν 
 = 
d
√

R/g = 
b/Re

For a given mode, the frequencies increase with depth and a constant value is attained around a depth h∗ that
is mode-dependent; h∗ is higher for the lower modes implying that the lowest modes have the largest slosh mass
participating in the motion of the liquid-structure system. For fixed depth, the higher modes oscillate at higher
frequencies; the rate of increase of the frequency with depth is also higher. The damping rates, for a given mode,
decrease with depth due to the weaker boundary layers. For fixed depth, the higher modes have the higher damping
rates; they decay faster.

The present calculations, as well as those in [1], show the coupled frequency and damping rates to be almost
constant for approximately h/R > 0.5; however, the two methods yield quite different constant values as shown
in Table 4. The worst discrepancy is for the (1, 0) mode where the present calculation yields a damping rate that
is more than four times that given in [1]. The other damping rates are also off by values ranging from 20% to
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Table 4 Comparison of
damping rates and
frequencies between present
results and [1]

Re = 100, h = 2, τ =
0.1, ζ = 0.01

Mode −
r 
i

Present [1] Present [1]

(1,0) 0.191 0.047 2.19 2.01

(2,0) 0.349 0.135 3.32 2.98

(3,0) 0.529 0.435 4.49 4.22

(1,1) 0.566 0.449 5.05 6.98
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Fig. 10 Variation of the coupled (a) damping rates (b) frequencies of the (1,0), (2,0) and (3,0) modes with depth. ζ = 10−2, τ = 0.1
and Re = 10

Table 5 Comparison of hcr
between present results and
[3] for the lowest three
modes

Re = 100, τ = 0.1, ζ =
0.01

Mode hcr

Present [3]

(1,0) 0.19 0.5

(2,0) 0.14 0.5

(3,0) 0.12 0.16

250% with better agreement for the higher modes. The frequencies show better agreement; the three lowest modal
frequencies differ by 6–10% while the frequency of the (1, 1) mode is off by about 40%.

From Fig. 9, we also see that, for shallow depths, the frequency (damping rate) rapidly decreases (increases) with
decreasing depth; at a critical depth hcr, the frequency goes to zero and the damping rate becomes double valued
with one branch continuing below the original curve, the other above. This is the familiar overdamped behaviour
of a damped linear oscillator; only aperiodic slosh motions occur for h < hcr. In Fig. 9(a) we have shown only
the lower branches for h < hcr. The values of hcr are given in Table 5; corresponding values from [3] are also
included. While both calculations show hcr decreasing with increasing mode number, the actual values from the two
calculations are quite different. We show similar results for the lowest three modes for a lower Re = 10 in Fig. 10.
Since the damping rates are much higher for the lower Re, (about five times at h = 1 for the (1,0) mode), aperiodic
motions set in at much larger liquid depths. Thus, for instance, hcr ≈ 0.3, 0.4 and 0.54 for the (3, 0), (2, 0) and
(1, 0) modes, respectively.

We plot, in Fig. 11, the damping rate and frequency variations for a three decadal variation of the tension param-
eter τ for ζ = 0.01, h = 1 and Re = 100. The frequencies are almost constant for τ < τ ∗, where τ ∗ decreases
with increasing mode number. For a given mode, the frequencies increase with increasing τ with the higher modes
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Fig. 11 Variation of the coupled (a) damping rates (b) frequencies of the (1,0), (2,0) and (3,0) modes with τ . ζ = 10−2, h = 1 and
Re = 100

10-2 10-1 100 101
0

0.1

0.2

0.3

0.4

0.5

0.6

− Ω

ζ

r
(3,0)

(2,0)

(1,0)

10-2 10-1 100 101
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ζ

(3,0)
(2,0)

(1,0)

iΩ

(a) (b)

Fig. 12 Variation of the coupled (a) damping rates (b) frequencies of the (1,0), (2,0) and (3,0) modes with ζ . h = 1, τ = 0.1 and
Re = 100

showing the largest increase. The damping rates show an interesting dip before again increasing for large τ ∗; these
changes are however only a fraction of the mean value (≈10%, 20%, 20% over a three decadal range for the lowest
three modes). The increase for large τ is in accordance with the statements in [1, p. 11]. Finally, we show the
variation of the frequency and the damping rate with ζ in Fig. 12. Both decrease with increasing ζ ; however there
exist parameter ranges where 
i increases with increasing ζ as was shown earlier (Fig. 5).

5 Conclusion

In the introduction of [1], the authors state: ‘Both solutions, i.e., the one of [29]2 and that presented here, are
approximations to an exact solution which is not yet available. For that reason, and especially for the assumed ana-
lytical structure of these two cases the results cannot coincide and cannot exhibit at a certain h/a – value complete
agreement. . . . We must emphasize that for these reasons we cannot expect a complete agreement in the transition
zone from shallow to large aspect ratio containers.’

In this paper, we have presented an ‘exact’ solution that is valid for any liquid depth and there is no problem
in the ‘transition’ zone from shallow to large depths. The use of complex eigenfunctions makes the representation
rich enough to satisfy the wall and bottom boundary conditions simultaneously, besides the ones on the elastic
membrane. We have presented calculations of the complex frequency for the lowest modes over a wide range of

2 Ref. [29] is [3] in this paper.
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parameters: Re ranging from 1 to 10000, depths ranging from 0.1 to 2, τ ranging from 0.0001 to 0.1 and ζ ranging
from 0.01 to 10. The broad conclusions that can be drawn from these calculations are summarised below:

1. The coupled (hydroelastic) frequencies are higher when compared to the slosh frequencies of an uncovered free
surface only if the contact line is free to move in the latter case. This was the case considered in [15] and is also
the basis for the third conclusion in [1]. However, the hydroelastic frequencies are lower in comparison with the
slosh frequencies of an uncovered free surface if the contact line is pinned. We conjecture that this is because of
the increased damping rate with a cover which then results in a reduction of the frequency in comparison with
the case of no cover. Support for the conjecture comes from the results that show the frequencies to be closer
as Re → ∞.

2. For given liquid volume and membrane (fixed h, τ and ζ ), the frequencies (damping rates) increase (decrease)
with decreasing liquid viscosity (increasing Re). In the limit Re → ∞, they approach the inviscid frequency and
zero, respectively. For increasing viscosity (decreasing Re), the frequencies decrease and vanish for Re < Recr.
This is the well known behaviour of a damped linear oscillator.

• Recr increases with increasing mode number.
• Recr increases with decreasing liquid depth.
• Recr decreases with increasing mass parameter ζ. For very heavy covers, Recr ≈ 0.

3. For given liquid and membrane (fixed Re, τ and ζ ), the frequencies of any mode decrease with decreasing
liquid volume (decreasing depth). For a depth below the critical depth (h < hcr), the frequencies vanish. The
damping rates, on the other hand, increase with decreasing depth. At h = hcr, they become double valued with
one value decreasing and the other increasing with further decrease in depth. Since the lower value controls the
overall damping rate, we have followed only this branch.

• hcr increases with decreasing mode number. This means that the range of depths for which the higher
modes exhibit aperiodic decay is smaller.

• hcr increases with decreasing Re.

4. For given liquid and membrane tension (fixed Re, h and τ ), the frequencies and damping rates decrease with
an increasingly heavy cover (increasing ζ ). However, there exist parameter ranges (typically small volumes of
highly viscous liquids) wherein the frequencies increase with increasing ζ. In these ranges, the lighter cover
produces overdamped oscillations while periodic oscillations are produced with the heavier cover.

5. For given liquid and membrane (fixed h,Re and ζ ), the frequencies increase with increasing membrane tension
(increasing τ ) while the damping rates increase for large τ ; for smaller Re, this increase may not be monotonic.
However, the variations in the damping rate are relatively small.

The same procedure can be applied for an elastic plate covering the free surface by merely modifying the represen-
tation of η to take care of the additional boundary condition that has to be applied on the plate boundary.

Acknowledgements I thank the four anonymous referees for their valuable comments and criticism; these have led to a much improved
paper. The work is funded by the Aeronautical Research & Development Board, India under project number 1031452.

Appendix

β
1,2
nl = β

4,5
nl =

1∫
0

r p1,2
n (r)Jm(δlr)dr, β3

nl = − tanh
λnh

2

1∫
0

r p3
n(r)Jm(δlr)dr,

ξ
1,2
nl = ξ

4,5
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1∫
0

rq1,2
n (r)Jm(δlr)dr, ξ3
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µnh

2

1∫
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rq3
n (r)Jm(δlr)dr,
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χ
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